X-ray Crystallography
X-ray Crystallography is a scientific method used to determine the arrangement of atoms of a crystalline solid in three dimensional (3D) spaces. This technique makes use of the interatomic spacing of many crystalline solids by employing them as a diffraction gradient for x-ray light. X-ray crystallography is the application used for neutron scattering to the find the atomic or magnetic structure of any crystal or material. The process of determination of a sample is done by placing the sample in a beam of thermal or cold neutrons to observe a diffraction pattern that gives details about the structure of the material. This neutron diffraction technique is same as X-ray diffraction but of their different scattering properties, neutrons and X-rays will give the same information about the beams X-Rays are mostly used for the high resolution analysis of strong x-rays from synchrotron radiation that are mostly used for the shallow depths or thin specimens but neutrons have high penetration depth.
- Crystallography Scattering
- Crystallographic database
- Electron diffraction
- Inelastic Neutron Scattering
Related Conference of X-ray Crystallography
32nd International Conference on Advanced Materials, Nanotechnology and Engineering
39th International Conference on Materials Science and Engineering
12th International Conference and Expo on Ceramics and Composite Materials
24th International Conference and Exhibition on Materials Science and Chemistry
X-ray Crystallography Conference Speakers
Recommended Sessions
- Chemical Crystallography
- Crystallographic Computing
- Crystal Growth and Crystallization
- Crystallography Applications
- Crystallography in Biology
- Crystallography in Material Science
- Crystallography in Nanotechnology
- Crystallography of Novel Materials
- Experimental methods in Xâ€ray & Neutron Crystallography
- Future challenges in Crystallography
- Inorganic and Mineral Crystals
- Mineralogy and Geology- Role in Crystallography
- Novel materials for Energy applications
- Nuclear Magnetic Resonance (NMR) Crystallography
- Physical Properties of Crystals
- Polymer Crystallography
- Protein Crystallography
- Refinement of Crystal Structures
- Structural Chemistry in Crystallography
- X-ray Crystallography
Related Journals
Are you interested in
- Additive Manufacturing – 3D Printed Materials - Ceramics 2026 (Italy)
- Additive Manufacturing – 3D Printing - Material science-2026 (Italy)
- Advanced Ceramics – High Performance - Ceramics 2026 (Italy)
- Advanced Materials and Functional Devices - ADVANCED MATERIALS 2026 (France)
- Advanced Materials and Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Bio-Ceramics – Healthcare Innovations - Ceramics 2026 (Italy)
- Biomaterials – Healthcare Innovations - Material science-2026 (Italy)
- Biomedical Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Carbon Nanostructures and Graphene - ADVANCED MATERIALS 2026 (France)
- Ceramic Coatings – Wear & Thermal Protection - Ceramics 2026 (Italy)
- Ceramic-Polymer Hybrids – Multifunctional Materials - Ceramics 2026 (Italy)
- Ceramics – High-Performance Materials - Material science-2026 (Italy)
- Composite Materials - ADVANCED MATERIALS 2026 (France)
- Composites – Lightweight & Strong - Material science-2026 (Italy)
- Computational Materials – Modeling & Simulation - Material science-2026 (Italy)
- Energy & Electronic Materials – Functional Ceramics - Ceramics 2026 (Italy)
- Energy Materials – Batteries & Storage - Material science-2026 (Italy)
- Functional Nanostructures – Design & Fabrication - Material science-2026 (Italy)
- Functionally Graded Materials – Tailored Properties - Ceramics 2026 (Italy)
- Material Characterization – Testing & Analysis - Material science-2026 (Italy)
- Metal Alloys – Strength & Durability - Material science-2026 (Italy)
- Metal Matrix Composites – Strength & Durability - Ceramics 2026 (Italy)
- Miniaturization Technology - ADVANCED MATERIALS 2026 (France)
- Molecular biology and Materials science - ADVANCED MATERIALS 2026 (France)
- Nano Materials - ADVANCED MATERIALS 2026 (France)
- Nano Structures - ADVANCED MATERIALS 2026 (France)
- Nano Technology and Photonics Communication - ADVANCED MATERIALS 2026 (France)
- Nanocluster and Nanoscience - ADVANCED MATERIALS 2026 (France)
- Nanocomposites – Functional Applications - Ceramics 2026 (Italy)
- Nanomaterials – Advanced Applications - Material science-2026 (Italy)
- Nanometrology and Instrumentation - ADVANCED MATERIALS 2026 (France)
- Nanoparticle and Nanoscale Research - ADVANCED MATERIALS 2026 (France)
- Nanoparticle Synthesis and Applications - ADVANCED MATERIALS 2026 (France)
- Nanosensors Devices - ADVANCED MATERIALS 2026 (France)
- Nanotechnology-Basics to Applications - ADVANCED MATERIALS 2026 (France)
- Optical Materials and Plasmonics - ADVANCED MATERIALS 2026 (France)
- Photonic Materials – Optical & Electronics - Material science-2026 (Italy)
- Polymer Composites – Lightweight Solutions - Ceramics 2026 (Italy)
- Polymers – Functional & Smart Designs - Material science-2026 (Italy)
- Properties of Nano Materials - ADVANCED MATERIALS 2026 (France)
- Reinforced Composites – Strength Optimization - Ceramics 2026 (Italy)
- Science and Technology of Advanced Materials - ADVANCED MATERIALS 2026 (France)
- Smart Materials – Responsive & Adaptive - Material science-2026 (Italy)
- Spintronics - ADVANCED MATERIALS 2026 (France)
- Structural Composites – Aerospace & Automotive - Ceramics 2026 (Italy)
- Sustainable Ceramics – Eco-Friendly Materials - Ceramics 2026 (Italy)
- Sustainable Materials – Eco-Friendly Solutions - Material science-2026 (Italy)
- Thermal Barrier Materials – High-Temperature Performance - Ceramics 2026 (Italy)
- Thin Films – Coatings & Surface Engineering - Material science-2026 (Italy)
- Wear-Resistant Composites – Industrial Applications - Ceramics 2026 (Italy)
