Nuclear Magnetic Resonance (NMR) Crystallography
Nuclear Magnetic Resonance (NMR) crystallography is a type method that uses primary NMR spectroscopy to find the structure of different solid materials in the atomic scale. So the solid-state NMR spectroscopy will be used primarily, and possibly supplemented by quantum chemistry calculations (e.g. density functional theory), powder diffraction etc. If crystals is grown is properly and uniquely, any crystallographic method can generally be used to determine the crystal structure and in case of organic compounds the molecular structures and molecular packing. The main use of NMR crystallography is in determining micro crystalline materials which are used to this method but not to X-ray, neutron and electron diffraction. This is largely used because interactions that are short range are measured in NMR crystallography.
- Dipolar interaction
- Non-covalent interactions
- Solid-State NMR
- Crystal Structure Refinements
- Chemical shift interaction
Related Conference of Nuclear Magnetic Resonance (NMR) Crystallography
32nd International Conference on Advanced Materials, Nanotechnology and Engineering
24th International Conference and Exhibition on Materials Science and Chemistry
Nuclear Magnetic Resonance (NMR) Crystallography Conference Speakers
Recommended Sessions
- Chemical Crystallography
- Crystallographic Computing
- Crystal Growth and Crystallization
- Crystallography Applications
- Crystallography in Biology
- Crystallography in Material Science
- Crystallography in Nanotechnology
- Crystallography of Novel Materials
- Experimental methods in Xâ€ray & Neutron Crystallography
- Future challenges in Crystallography
- Inorganic and Mineral Crystals
- Mineralogy and Geology- Role in Crystallography
- Novel materials for Energy applications
- Nuclear Magnetic Resonance (NMR) Crystallography
- Physical Properties of Crystals
- Polymer Crystallography
- Protein Crystallography
- Refinement of Crystal Structures
- Structural Chemistry in Crystallography
- X-ray Crystallography
